Category: News

A quantum algorithm for the direct calculations of vertical ionization energies.

J. Phys. Chem. Lett. 2021, #, 2880–2885, Published online (DOI: 10.1021/acs.jpclett.1c00283) Open access Recently, a quantum algorithm that is capable of directly calculating the energy gap between two electronic states having different spin quantum numbers without inspecting the total energy of the individual electronic states was proposed. This quantum algorithm guarantees an exponential speedup, like quantum phase estimation (QPE)-based full-CI, with much lower costs. In this work, we propose a modified quantum circuit for the direct calculations of spin state energy gaps to reduce the number of qubits and quantum gates, extending the quantum algorithm to the direct calculation of vertical ionization energies. Numerical quantum circuit simulations for the ionization of […]

A quantum algorithm for spin chemistry: a Bayesian exchange coupling parameter calculator with broken-symmetry wave functions.

Chem. Sci. 2021, , Published online (DOI: 10.1039/d0sc04847j) Open access The Heisenberg exchange coupling parameter J (H = −2JSi · Sj) characterises the isotropic magnetic interaction between unpaired electrons, and it is one of the most important spin Hamiltonian parameters of multi-spin open shell systems. The J value is related to the energy difference between high-spin and low-spin states, and thus computing the energies of individual spin states are necessary to obtain the J values from quantum chemical calculations. Here, we propose a quantum algorithm, ayesian echange coupling parameter calculator with roken-symmetry wave functions (BxB), which is capable of computing the J value directly, without calculating the energies of individual spin states. The BxB algorithm is composed of the quantum simulations of the time […]

[2020 PCCP HOT Article] A probabilistic spin annihilation method for quantum chemical calculations on quantum computers

Phys. Chem. Chem. Phys. 2020, 22, 20990-20994 (DOI: 10.1039/D0CP03745A) Open access [ 2020 PCCP HOT Article ] A probabilistic spin annihilation method based on the quantum phase estimation algorithm is presented for quantum chemical calculations on quantum computers. This approach can eliminate more than one spin component from the spin contaminated wave functions by single operation. Comparison with the spin annihilation operation on classical computers is given. 大学の新着ニュースに掲載されました。

Trityl-Aryl-Nitroxide-Based Genuinely gEngineered Biradicals, As Studied by Dynamic Nuclear Polarization Multifrequency ESR/ENDOR, Arbitrary Wave Generator Pulse Microwave Waveform Spectroscopy, and Quantum Chemical Calculations

J. Phys. Chem. A 2019, 123, 7507-7517. (DOI: 10.1021/acs.jpca.9b07169) Trityl and nitroxide radicals are connected by π-topologically controlled aryl linkers, generating genuinely g-engineered biradicals. They serve as a typical model for biradicals in which the exchange (J) and hyperfine interactions compete with the g-difference electronic Zeeman interactions. The magnetic properties underlying the biradical spin Hamiltonian for solution, including J’s, have been determined by multifrequency CW-ESR and 1H ENDOR spectroscopy and compared with those obtained by quantum chemical calculations. The experimental J values were in good agreement with the quantum chemical calculations. The g-engineered biradicals have been tested as a prototype for AWG (Arbitrary Wave Generator)-based spin manipulation techniques, which enable GRAPE […]

[ 2019 PCCP HOT Article ]Quantum chemistry on quantum computers: quantum simulations of the time evolution of wave functions under the S2 operator and determination of the spin quantum number S

Phys. Chem. CHem. Phys. 2019, 21, 15356-15361. (DOI: 10.1039/C9CP02546D) Open access [ 2019 PCCP HOT Article ] Quantum computers have an enormous impact on quantum chemical calculations. Approaches to calculate the energies of atoms and molecules on quantum computers by utilizing quantum phase estimation (QPE) and the variational quantum eigensolver (VQE) have been well documented, and dozens of methodological improvements to decrease computational costs and to mitigate errors have been reported until recently. However, the possible methodological implementation of observables on quantum computers such as calculating the spin quantum numbers of arbitrary wave functions, which is a crucial issue in quantum chemistry, has been discussed less. Here, we propose a quantum […]