ACS Cent. Sci. 2019, 5, pp.167-175 (DOI: 10.1021/acscentsci.8b00788) Open access The full configuration interaction (full-CI) method is capable of providing the numerically best wave functions and energies of atoms and molecules within basis sets being used, although it is intractable for classical computers. Quantum computers can perform full-CI calculations in polynomial time against the system size by adopting a quantum phase estimation algorithm (QPEA). In the QPEA, the preparation of initial guess wave functions having sufficiently large overlap with the exact wave function is recommended. The Hartree–Fock (HF) wave function is a good initial guess only for closed shell singlet molecules and high-spin molecules carrying no spin-β unpaired electrons, around […]

### Category: NewsJ

ニュース

## Open shell electronic state calculations on quantum computers: A quantum circuit for the preparation of configuration state functions based on Serber construction

Chemical Physics Letters: X 2019, 1, 10002. (DOI: 10.1016/j.cpletx.2018.100002) Open access Full configuration interaction (full-CI) calculations can be executed efficiently on quantum computers (QCs) by utilizing a quantum phase estimation algorithm (QPEA). In the QPEA-based full-CI on QCs, the preparation of the initial guess wave functions having large overlap with the full-CI root is crucial. Recently, we proposed a quantum circuit to prepare spin symmetry-adapted configuration state functions (CSFs) toward open shell electronic structure calculations of molecules on QCs. Here, we propose an improved quantum circuit, based on Serber construction of spin eigenfunctions, enabling us to prepare CSFs with much less and easier-to-implement quantum gates than the previously proposed one. […]

## Microscopic Behavior of Active Materials inside a TCNQ-based Lithium Ion Rechargeable Battery by in-situ 2D ESR Measurements

ACS Appl. Mater. Interfaces 10, pp.43631-43640 (2018) (DOI: 10.1021/acsami.8b14967) Real-time spectroscopic measurements in rechargeable batteries are important to understand the electrochemistry of the batteries at the molecular level and improve relevant functionalities. We have applied in-situ two-dimensional (2D) ESR spectroscopy to a well-known organic lithium ion battery, which is composed of 7,7,8,8-tetracyanoquinodimethane (TCNQ) as the cathode-active material and a lithium metal anode electrode. The TCNQ rechargeable battery is suitable for investigating electrochemistry in the battery in terms of behavior of electron spin at microscopic levels on both the cathode and anode electrodes. We have discussed two-stage oxidation/reduction reactions of TCNQ, Li deposited/stripped process and their resulting dendritic and/or mossy microstructures, clearly elucidating the cause […]

## ESR analyses of picket fence MnII and 6th ligand coordinated FeIII porphyrins (S = 5/2) and a CoII(hfac) complex (S = 3/2) with sizable ZFS parameters revisited: a full spin Hamiltonian approach and quantum chemical calculations

Dalton Trans., 47, 16429-16444 (2018). (DOI:10.1039/C8DT02988A) The fictitious spin-1/2 (effective spin-1/2) Hamiltonian approach has been the putative method to analyze the conventional fine-structure/hyperfine ESR spectra of high spin metallocomplexes with sizable zero-field splitting (ZFS) tensors since the early 1950s, and the approach gives salient principal geff-values far from g = 2 without explicitly affording their ZFS values in most cases. The experimental geff-values thus determined, however, never agree with those (gtrue-values) of the true principal g-tensors, which are obtainable from reliable quantum chemical calculations. We have recently derived exact or extremely accurate analytical expressions for the geff/gtrue relationships for the spin quantum number S‘s up to S = 7/2 (T. […]

## Reversible solution pi-dimerization and long multicenter bonding in a stable phenoxyl radical

Chemistry – A European Journal Chem. Eur. Journal, 24, pp.14906-14910 (2018). (DOI:10.1002/chem.201802204) Reversible solution p-dimerization is observed in the stable neutral phenoxyl radical 2,6-bis-(8-quinolylamino)-4-(tertbutyl) phenoxyl baqp and is spectroscopically characterized. This behavior, not previously observed for p-extended phenoxyl radicals, is relevant to the formation of long multicenter bonding in the p-dimer at low temperature akin to previously reported phenalenyl radicals. Our experimental data are supported in a quantitative manner by results from density functional theory (DFT) and ab initio molecular orbital theory calculations. Our theoretical results indicate that the solution dimer features strong bonding interactions between the two phenoxyl rings but that the stability of the dimer is also related […]

## Fe-Transferrins or their homologues in ex-vivo mushrooms as identified by ESR spectroscopy and quantum chemical calculations: a full spin-Hamiltonian approach for the ferric sextet state with intermediate zero-field splitting parameters

Food Chemistry Volume 266, 15 November 2018, Pages 24-30 http://doi.org/10.1016/j.foodchem.2018.05.092 Fe-transferrins/their homologues in ex-vivo mushrooms were identified by ESR spectroscopy at liquid helium temperature, 4 K. The ESR fine-structure signals from Grifola frondosa were analyzed by spectral simulation with a full spin-Hamiltonian approach, determining the spin Hamiltonian parameters of the ferric iron species bound in the biological environment: S = 5/2, g = (2.045, 2.01, 2.235), |D| = 0.28 cm−1, |E/D| = 0.05. The zero-field splitting (ZFS) parameters, D– and E-values, are very close to the reported values, |D| = 0.25 cm−1 and |E/D| = 0.06, for an Fe-transferrin with oxalate anion, and to |D| = 0.25 cm−1 and |E/D| = 0.04 for one with malonate anion in human sera, suggesting that the Fe3+ species are from Fe-transferrins or their […]

## The 5th WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers

[English] 平成30年3月29-30日に、大阪市立大学で “Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers” に関する第5回国際セミナーを開催します。 皆様のご参加をお待ちしております。 The 5th International WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers 日時：2018年3月29日（木）、30日（金） 場所：大阪市立大学 学術情報総合センター6階セミナールーム 海外招待講演者及び講演題目等の詳細はこちら 連絡先：佐藤和信（大阪市大院理 sato@sci.osaka-cu.ac.jp)

## The Zavoisky Award 2017 went to Prof. Takeji Takui.

Prof. Takeji Takui received the Zavoisky Award 2017 for his contributions to the development of organic high-spin and open-shell molecules and their EPR-based quantum spin technology.

## The 4th WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers

[English] 平成29年3月29-30日に、大阪市立大学で “Quantum Chemistry on Quantum Computers” に関する第4回国際セミナーを開催します。 皆様のご参加をお待ちしております。 Joint WS on AI Applications to Univ. Education/Administration and QC/QCC-on-QCs: Quantum Algorithm 2017 (International OCU Chemistry/Molecular materials Science Seminar: The 4th WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers) 日時：2017年3月29日（水）、30日（木） 場所：大阪市立大学 高原記念館 海外招待講演者及び講演題目等の詳細はこちら 連絡先：佐藤和信（大阪市大院理 sato@sci.osaka-cu.ac.jp)

## Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules

J. Phys. Chem. A 120, pp.6459-6466 (2016). DOI: 10.1021/acs.jpca.6b04932 Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of openshell molecules, based on the addition theorem of […]