J. Magn. Reson., 291, pp.14-22 (2018). DOI:10.1016/j.jmr.2018.03.005 A method is proposed for optimizing the performance of the APSOC (Adiabatic-Passage Spin Order Conversion) technique, which can be exploited in NMR experiments with singlet spin states. In this technique magnetization-to-singlet conversion (and singlet-to-magnetization conversion) is performed by using adiabatically ramped RF-fields. Optimization utilizes the GRAPE (Gradient Ascent Pulse Engineering) approach, in which for a fixed search area we assume monotonicity to the envelope of the RF-field. Such an approach allows one to achieve much better performance for APSOC; consequently, the efficiency of magnetization-to-singlet conversion is greatly improved as compared to simple model RF-ramps, e.g., linear ramps. We also demonstrate that the optimization […]

### Category: update info

## The 5th WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers

[English] 平成30年3月29-30日に、大阪市立大学で “Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers” に関する第5回国際セミナーを開催します。 皆様のご参加をお待ちしております。 The 5th International WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers 日時：2018年3月29日（木）、30日（金） 場所：大阪市立大学 学術情報総合センター6階セミナールーム 海外招待講演者及び講演題目等の詳細はこちら 連絡先：佐藤和信（大阪市大院理 sato@sci.osaka-cu.ac.jp)

## Behaviour of DFT-based approaches to the spin– orbit term of zero-field splitting tensors: a case study of metallocomplexes, MIII(acac)3 (M = V, Cr, Mn, Fe and Mo)

Phys. Chem. Chem. Phys., 19, pp.30128-30138 (2017). DOI: 10.1039/C7CP05533a Spin–orbit contributions to the zero-field splitting (ZFS) tensor (DSO tensor) of MIII(acac)3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson–Khanna (PK) and natural orbital-based Pederson–Khanna (NOB-PK)) methods, focusing on the behaviour of DFT-based approaches to the DSO tensors against the valence d-electron configurations of the transition metal ions in octahedral coordination. Both the DFT-based approaches reproduce trends in the D tensors. Significantly, the differences between the theoretical and experimental D (D = DZZ – (DXX + DYY)/2) values are smaller in NOB-PK than in PK, emphasising the usefulness of […]

## The Zavoisky Award 2017 went to Prof. Takeji Takui.

Prof. Takeji Takui received the Zavoisky Award 2017 for his contributions to the development of organic high-spin and open-shell molecules and their EPR-based quantum spin technology.

## Analyses of sizable ZFS and magnetic tensors of high spin metallocomplexes

Phys. Chem. Chem. Phys., 19, pp.24769-24791 (2017). DOI: 10.1039/C7CP03850J The fictitious spin-1/2 Hamiltonian approach is the putative method to analyze the fine-structure/hyperfine ESR spectra of high spin metallocomplexes having sizable zerofield splitting (ZFS), thus giving salient principal g-values far from around g = 2 without explicitly providing their ZFS parameters in most cases. Indeed, the significant departure of the g-values from g = 2 is indicative of the occurrence of their high spin states, but naturally they never agree with true g-values acquired by quantum chemical calculations such as sophisticated DFT or ab initio MO calculations. In this work, we propose facile approaches to determine the magnetic tensors of high spin metallocomplexes having sizable ZFS, instead of performing advanced high-field/high-frequency […]

## Synthesis and Magnetic Properties of Trioxytriphenylamine Dimers in Di(radical cationic) States

Chem, Eur. J., accepted (2017). DOI: 10.1002/chem.201703220 Three structural isomers of trioxytriphenylamine (TOT) dimers, 4,4”’-bis(2,2′:6′,2″:6″,6-trioxytriphenylamine) (4), 3,3”’-bis(2,2′:6′,2″:6″,6-trioxytriphenylamine) (5), and 3,4”’-bis(2,2′:6′,2″:6″,6-trioxytriphenylamine) (6) were prepared and their electronic and magnetic properties in the di(radical cationic) states were investigated. The X-ray crystal structure analysis demonstrated that the TOT moieties of all the di(radical cation)s have planar structures similar to that of the structure of the parent TOT radical cation 3+. The UV-vis spectrum of the di(radical cation) showed characteristic absorptions depending on the connecting pattern. Thus, in the long wavelength region (600-900 nm), 4-2+ exhibited strong and broad characteristic absorptions, while compounds 5-2+ and 62+ exhibited weak absorptions. Notably, in the 450-600 […]

## The 4th WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers

[English] 平成29年3月29-30日に、大阪市立大学で “Quantum Chemistry on Quantum Computers” に関する第4回国際セミナーを開催します。 皆様のご参加をお待ちしております。 Joint WS on AI Applications to Univ. Education/Administration and QC/QCC-on-QCs: Quantum Algorithm 2017 (International OCU Chemistry/Molecular materials Science Seminar: The 4th WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers) 日時：2017年3月29日（水）、30日（木） 場所：大阪市立大学 高原記念館 海外招待講演者及び講演題目等の詳細はこちら 連絡先：佐藤和信（大阪市大院理 sato@sci.osaka-cu.ac.jp)

## Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules

J. Phys. Chem. A 120, pp.6459-6466 (2016). DOI: 10.1021/acs.jpca.6b04932 Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of openshell molecules, based on the addition theorem of […]